Copied to
clipboard

G = C24⋊D13order 416 = 25·13

1st semidirect product of C24 and D13 acting via D13/C13=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C241D13, C23.25D26, (C2×C26)⋊8D4, C133C22≀C2, (C23×C26)⋊3C2, C26.63(C2×D4), C223(C13⋊D4), (C2×C26).61C23, C23.D1313C2, (C2×Dic13)⋊3C22, (C22×D13)⋊2C22, (C22×C26).42C22, C22.66(C22×D13), (C2×C13⋊D4)⋊8C2, C2.26(C2×C13⋊D4), SmallGroup(416,174)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C24⋊D13
C1C13C26C2×C26C22×D13C2×C13⋊D4 — C24⋊D13
C13C2×C26 — C24⋊D13
C1C22C24

Generators and relations for C24⋊D13
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e13=f2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 680 in 130 conjugacy classes, 41 normal (8 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C13, C22⋊C4, C2×D4, C24, D13, C26, C26, C22≀C2, Dic13, D26, C2×C26, C2×C26, C2×C26, C2×Dic13, C13⋊D4, C22×D13, C22×C26, C22×C26, C23.D13, C2×C13⋊D4, C23×C26, C24⋊D13
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, C22≀C2, D26, C13⋊D4, C22×D13, C2×C13⋊D4, C24⋊D13

Smallest permutation representation of C24⋊D13
On 104 points
Generators in S104
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 14)(11 15)(12 16)(13 17)(27 51)(28 52)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)
(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 37)(2 38)(3 39)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 40)(24 41)(25 42)(26 43)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 14)(11 15)(12 16)(13 17)(27 51)(28 52)(29 40)(30 41)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(61 74)(62 75)(63 76)(64 77)(65 78)(79 92)(80 93)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 65)(2 64)(3 63)(4 62)(5 61)(6 60)(7 59)(8 58)(9 57)(10 56)(11 55)(12 54)(13 53)(14 69)(15 68)(16 67)(17 66)(18 78)(19 77)(20 76)(21 75)(22 74)(23 73)(24 72)(25 71)(26 70)(27 88)(28 87)(29 86)(30 85)(31 84)(32 83)(33 82)(34 81)(35 80)(36 79)(37 91)(38 90)(39 89)(40 99)(41 98)(42 97)(43 96)(44 95)(45 94)(46 93)(47 92)(48 104)(49 103)(50 102)(51 101)(52 100)

G:=sub<Sym(104)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50), (53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,37)(2,38)(3,39)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,40)(24,41)(25,42)(26,43)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,65)(2,64)(3,63)(4,62)(5,61)(6,60)(7,59)(8,58)(9,57)(10,56)(11,55)(12,54)(13,53)(14,69)(15,68)(16,67)(17,66)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,91)(38,90)(39,89)(40,99)(41,98)(42,97)(43,96)(44,95)(45,94)(46,93)(47,92)(48,104)(49,103)(50,102)(51,101)(52,100)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50), (53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,37)(2,38)(3,39)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,40)(24,41)(25,42)(26,43)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,14)(11,15)(12,16)(13,17)(27,51)(28,52)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(61,74)(62,75)(63,76)(64,77)(65,78)(79,92)(80,93)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,65)(2,64)(3,63)(4,62)(5,61)(6,60)(7,59)(8,58)(9,57)(10,56)(11,55)(12,54)(13,53)(14,69)(15,68)(16,67)(17,66)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,88)(28,87)(29,86)(30,85)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,91)(38,90)(39,89)(40,99)(41,98)(42,97)(43,96)(44,95)(45,94)(46,93)(47,92)(48,104)(49,103)(50,102)(51,101)(52,100) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,14),(11,15),(12,16),(13,17),(27,51),(28,52),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50)], [(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,37),(2,38),(3,39),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,40),(24,41),(25,42),(26,43),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,14),(11,15),(12,16),(13,17),(27,51),(28,52),(29,40),(30,41),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(61,74),(62,75),(63,76),(64,77),(65,78),(79,92),(80,93),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,65),(2,64),(3,63),(4,62),(5,61),(6,60),(7,59),(8,58),(9,57),(10,56),(11,55),(12,54),(13,53),(14,69),(15,68),(16,67),(17,66),(18,78),(19,77),(20,76),(21,75),(22,74),(23,73),(24,72),(25,71),(26,70),(27,88),(28,87),(29,86),(30,85),(31,84),(32,83),(33,82),(34,81),(35,80),(36,79),(37,91),(38,90),(39,89),(40,99),(41,98),(42,97),(43,96),(44,95),(45,94),(46,93),(47,92),(48,104),(49,103),(50,102),(51,101),(52,100)]])

110 conjugacy classes

class 1 2A2B2C2D···2I2J4A4B4C13A···13F26A···26CL
order12222···2244413···1326···26
size11112···2525252522···22···2

110 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D13D26C13⋊D4
kernelC24⋊D13C23.D13C2×C13⋊D4C23×C26C2×C26C24C23C22
# reps1331661872

Matrix representation of C24⋊D13 in GL4(𝔽53) generated by

52000
52100
0010
0001
,
1000
15200
00141
00052
,
52000
05200
00520
00052
,
52000
05200
0010
0001
,
13000
354900
001617
00010
,
15100
05200
003736
001516
G:=sub<GL(4,GF(53))| [52,52,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,1,0,0,0,52,0,0,0,0,1,0,0,0,41,52],[52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[52,0,0,0,0,52,0,0,0,0,1,0,0,0,0,1],[13,35,0,0,0,49,0,0,0,0,16,0,0,0,17,10],[1,0,0,0,51,52,0,0,0,0,37,15,0,0,36,16] >;

C24⋊D13 in GAP, Magma, Sage, TeX

C_2^4\rtimes D_{13}
% in TeX

G:=Group("C2^4:D13");
// GroupNames label

G:=SmallGroup(416,174);
// by ID

G=gap.SmallGroup(416,174);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,217,218,13829]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^13=f^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽